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ABSTRACT
We present a novel methodological approach for the
interactive editing of big point clouds. Based on the
mathematics of fiber bundles, the proposed approach to
model a data structure that is efficient for visualization,
modification and I/O including an unlimited multi-level
set of editing states useful for expressing and maintain-
ing multiple undo histories. Backed by HDF5 as high
performance file format, this data structure naturally al-
lows persistent storage for the history of modification
actions, an unique new feature of our approach. The
challenges of visually based manual editing of big point
clouds are discussed and a proper rendering solution is
presented. The implemented solution and its features as
consequences of the underlying methodology are com-
pared with two major mainstream applications provid-
ing point-cloud editing tools as well.
Keywords: point clouds, interaction, classification,
data editing, fiber bundle data model, undo history

1 INTRODUCTION
Correct and accurate classification is an essential step
in the LiDAR (Light Detection And Ranging) point
cloud processing. More specifically, the classification
of ALB (Airborne Laser Bathymetry) data focuses pri-
marily on the definition of terrain and water surface
points. The latter is required for the final refraction
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and runtime correction of points lying beneath the wa-
ter surface. According to the summary of [LG17],
morphological (e.g., [Sit01, MWSCC09]) and surface
(e.g., [KP97, LKS00]) based filters and their extension-
s/variants are among others utilized for the terrain de-
tection. All described approaches solely represent au-
tomatically calculated classification results. Consider-
ing 3D data and their interpretation, recent algorithms
cannot replace the human capability of cognitive ab-
straction and anticipation. Thus, a manual inspection
and editing procedure of automatically classified point
clouds is crucial in order to correct erroneous classifica-
tion results if required, and to ensure data quality. The
quality of automated ALB point classification results
strongly depends on the overall raw data quality, which
is mainly influenced by weather and water conditions
during the survey, and on the general morphological
appearance of a project area. A high humidity during
an ALB survey results in increased flaw echo detection,
and such noisy points need to be separated from the ac-
tual points of interest (Fig. 1). Further factors reducing
the quality of the automated classification are:

• the terrain complexity, e.g. high mountainous relief
vs. uniform flatlands [CZWea13];

• a dense vegetation canopy with shadowing effects
reducing the actual terrain coverage [WSB+12];

• high water turbidity limiting water penetration [Man20];

• white water areas impeding water-ground detection;

• water-bottom material consisting of substrates with
increased light absorbing characteristics (e.g., un-
derwater plants, organic matter mixed with bed ma-
terial) hampering water-ground detection[Man22].



Figure 1: ALB scan strip with flaw echoes (yellow
to orange) and relevant point data (white) that can be
clearly separated by visual inspection.

Thus, the manual correction of the classification can
be highly time consuming depending on these condi-
tions as well as the spatial extent of the project area. To
minimize the manual editing effort on one hand, recent
software development is focused on the improvement of
the automatic classification of ALB data by incorporat-
ing and combining further raw data attributes and de-
rived geometric parameters into the classification pro-
cess (e.g. [SDB+21]) , or utilizing machine/deep learn-
ing approaches for specific classification purposes (e.g.
[HEA+21]). On the other hand, an efficient manual
point-cloud editing toolkit together with a fast and flex-
ible point-cloud visualization and navigation regard-
less of file size are important prerequisites for minimiz-
ing manual correction efforts on classification results.
Manual editing tools are often standard components
of various available LiDAR software packages, such
as Terrasolid by Terrasolid Ltd., RiProcess by RIEGL
LMS, or LAStools by rapidlasso GmbH. In this pa-
per, however, we present the manual point cloud edit-
ing tools integrated in HydroVish, and how we optimize
therewith the general ALB point-cloud processing.

This article’s structure is: Sec. 2 reviews the foun-
dations of the visualization environment, the data orga-
nization model and the underlying file format; Sec. 3
discusses the aspects of user-friendly and versatile se-
lection of regions within a point cloud; Sec. 4 focuses
on persistent storage of an unlimited undo history for
big datasets while sustaining interactive performance;
finally, section Sec. 5 presents a comparison of our im-
plementation with two existing external applications.

2 PREREQUISITES
The work as presented here is implemented in the Vish
Visualization Shell [BRH07], a general-purpose frame-
work for visualization algorithms. Its specialization to
bathymetric datasets, HydroVISH, is used in produc-
tion by AHM GmbH1 for large point clouds acquired
by high-resolution airborne observations.

1 www.ahm.co.at

2.1 Visualization Pipeline & Networks
Haber & McNabb [HM90] described a conceptual visu-
alization process with three basic stages, transforming
raw data into displayable images. These steps occur
in most visualization processes and aim to convert data
into information while maintaining the integrity of the
content with best accuracy.

Modular visualization environments turn these stages
into component parts that can be connected at runtime
such to allow customization for a particular task. This
type of visualization system is very widely used by the
scientific community for its flexibility and programma-
bility. The connections between visualization compo-
nents may be set up via scripts or graphically via a user
interface that allows to build a network representing the
data flow. This approach of “visual programming” does
not require any coding capabilities and is quickly in-
tuitive to end-users. Beyond the underlying data flow
also the control flow — the interaction of a user inter-
face with steering parameters influencing the data pro-
cessing — is important for flexibility and configurable
user experience. For instance, the ability to couple
two buttons with the same hotkey or mouse click per
user-driven configuration allows for personalized pref-
erences on how editing appears most convenient for a
particular experience.

2.2 The F5 Fiber Bundle Data Model
The mathematics of fiber bundles provides a frame-
work to model data for scientific visualization [BP89,
Ben04]. This concept considers data sets based on
the properties of their “base space” versus its “fiber
space”. A fiber bundle is basically a set of points with
neighborhood information and equally-sized data sets
attached to each such point. For instance, a multidimen-
sional homogeneous array constitutes a fiber bundle in
the mathematical sense. The F5 data model [Ben09]
builds upon this concept by grouping all dataset proper-
ties with the same number of elements, thereby defining
“index spaces” . Any suitable dataset is dissected into a
hierarchy of five levels according to its properties:

1. Time (temporal slicing),

2. Grid (geometrical entity),

3. Skeleton (topological property),

4. Representation (coordinates, relationships) and

5. Field (binary representations of numerical values).

An additional optional sixth level allows to split up a
Field into a set of named fragments (chunks of data
contiguous in memory) for easier handling of large
datasets. Each of these fragments may come with its
own size, but all fragments of the same name must be
of identical size within the same Skeleton.

www.ahm.co.at


The bottom line is the ability to handle datasets based
on explicit properties instead of a set of implicit built-
in assumptions: the model answers the question “how
is it?” about a dataset instead of the question “what is
it?”. Algorithms need to be implemented in a way such
to only request relevant properties of a dataset rather
than the “type” of a dataset. This approach allows to
cover a wide range of data categories using the same
software infrastructure. Point clouds are a rather sim-
ple subset of this general framework, but by virtue of
the fiber bundle data model the presented editing frame-
work immediately applies also to other data types such
as triangular meshes or line sets.

2.3 The HDF5 File Format
The hierarchical file format v.5 (HDF5 [HDF23]) is a
general-purpose, self-descriptive open file format de-
signed for high performance computing. It resembles
a “file system within a file” with many features beyond
an actual file system. For instance, structured data such
as multidimensional arrays and user-defined compound
types are supported natively. A wide range of data
compression algorithms is available via a plugin sys-
tem which allows optimization for different application
domains and scenarios. The hierarchical data organiza-
tion as used for the F5 data model from section 2.2 is
very suitable to be directly mapped onto an HDF5 file.

3 ON-SCREEN POINT SELECTION
The point selection tool allows to draw an outline on the
screen which is then projected into 3D space for select-
ing actual points. It provides multiple functionalities:

1. Polygon shape: each mouse click adds another point,
points are connected via straight lines.

2. Free-Hand shape: While the mouse button is pressed,
points are added to the shape while the mouse moves.

3. The shape can be stored and loaded, either as part of
the visualization network which contains the state of
all parameters of the current setup, or explicitly as a
polygonal set of points in various file formats.

4. The shape can be dragged along the screen, similar
to a “brush” in Photoshop™.

The drawing tool provides output actions, which by uti-
lizing the capabilities of the visualization network, can
be configured to perform different data editing actions
according to the choice of the user:

1. Without configuration, drawing an on-screen selec-
tion requires an explicit button to be clicked to se-
lect points. This mode is useful if the user wants
to carefully draw some shape first before applying a
selection.

2. The selection can be performed immediately at each
change of the shape, working for both adding more
points to the outline shape (polygon mode, free-hand
mode), as well as for dragging a fixed shape on the
screen (“brush mode”).

3. The selection can be performed when the outline
drawing is “closed”, i.e. the “last” point of an out-
line has been drawn and the outline is cleared such to
start a new draw operation. This is usually done with
a modified mouse-click, such as alt-mouse or right-
mouse such to differentiate this operation from the
shape drawing. This mode resembles the painting of
polygons or free-hand forms on a white board, but
in this case selects points within the point cloud.

3.1 Masked Editing via “Dots”
An additional level of security is given by displaying
the what-if of a data editing operation, i.e. before ac-
tually performing the data modification immediately.
This mode of editing is similar to utilizing a “selection”
in Photoshop™ in order to limit some filter operation
on a photo to this selected region. Similarly here we
first mark - and visually enhance - the set of points that
are intended for subsequent modification. This mask of
points can be modified, like adding or removing parts
of a selection, before an “apply” action (triggered by a
button in the GUI, a hotkey, or a certain mouse even)
modifies the actual data.

Per-point color attributes are sensitive pieces of infor-
mation that already convey important properties such as
RGB photographic data, height information, labels in-
formation (as elaborated in Sec. 3.2), etc. or an combi-
nation of those. In particular we display dots not as sin-
gular pixels on the screen, but via extended geometries
resembling little spheres. We call these “dots” to dis-
tinguish them from single-pixel display methods. This
“dot” display allows for highly precise study of fine
details in the point cloud with intuitive depth percep-
tion; this is not possible by displaying all data points as
single pixels. We explored several methods on to dis-
play markers on these “dots” without impacting their
ability display of basis attributes, as demonstrated in
Fig. 2. Some of the possible choices may be due to per-
sonal, aesthetic reasons, but there are also constraints
as the choice influences the appearance when zooming
out: as points shrink in screen-space, the marker infor-
mation may get lost once point size approaches a sin-
gle pixel - which is unacceptable when the conveying
the selection information is important. Thus, special
care must be taken for the modified rendering informa-
tion, for instance using a view-distance-dependent frac-
tion of the marker information versus basis information
such that the marker information becomes dominant on
overviews, as demonstrated in Fig. 3. In order to com-
pensate for small dots (in screen-space) such that these



Figure 2: Displaying selections as per-point attribute
independent of underlying colorization: colorized inner
core, colorized outer rim, colorized sections, transpar-
ent core, transparent sections, size adjustment.

will be rendered more like non-circular dots in an effort
to counter anti-aliasing (which would hide those) we
employ OpenGL’s fwidth() function to consider the
screen-space derivative of a dot’s texture. In the GLSL
shader this compensation works as follows:

i n vec2 S p l a t T e x t u r e ;
i n f l o a t Mask ;
i n vec4 MaskColor , P o i n t B a s e C o l o r ;
un i fo rm f l o a t Thresho ld , MaskRadius ;

f l o a t R2 , T , dR_dPixe l ;

R2 = dot ( S p l a t T e x t u r e , S p l a t T e x t u r e ) ;
dR_dPixe l = fwidth ( R2 ) ;
T = 1.0 −R2 ;
T +=.5 * dR_dPixe l * dR_dPixe l ;
T = clamp ( T , − 1 . 0 , 1 . 0 ) ;

i f ( T <0 .0 ) d i s c a r d ; / / Make d o t s round .

i f ( Mask > T h r e s h o l d &&
R2+ dR_dPixe l > MaskRadius )

c o l o r = MaskColor ;
e l s e

c o l o r = P o i n t B a s e C o l o r ;

MaskColor is the color for the marked regions in
modification points colored by the PointBaseColor
(which may be true RGB colors from observations,
height maps, intensity maps or any other color attribute).

Global parameter MaskRadius allows to fine-tune the
visibility of the mask, a value of 0.5 values masking and
colorization equally. Per-point attribute Mask defines a
value between 0.0 and 1.0 specifying the strength of the
mask; for a boolean mask, those values will be either
0.0 or 1.0; global parameter Threshold determines
at which strength the mask should be displayed at all
(0.5 per default). Selections can therefore be “hard” or
“fuzzy”, which can be useful when e.g. assigning RGB
color values in an airbrush-like manner.

OpenGL point sprites receive texture coordinates in
variable SplatTexture for each pixel in the range
[−1,+1]× [−1,+1]. The code computes a radial dis-
tance from these and discards all fragments beyond a
constant distance, effectively creating round dots on the
screen from the rectangular point sprite. This radius is
adjusted dependent on the size of the point sprite on
screen such that smaller sprites have less pixels cut off,
thus appear larger in relation. The same mechanism is
applied to the section of the dot that is colorized with
the mask indicator - thus smaller sprites are weighted
stronger and appear more prominently. The size of the
sprites per point is determined by the previous geom-
etry shader (code not shown here) based on view dis-
tance; thus more distant dots that got marked remain
visible when zooming out.

Figure 3: A good point-wise selection information
must display information also when “zooming out” in
overview mode.

Just making points transparent does not work eas-
ily within a three-dimensional scene as this would re-
quire depth-sorting of points or an equivalent technique
suitable for millions of objects - very likely impact-
ing performance, so we favored to use techniques with-
out any such overhead. For editing a photo, a mask
can be displayed by some two-dimensional overlay,
but for editing three-dimensional point clouds a sim-
ple per-point overlay is insufficient because points in
the foreground may hide points in the background -
a situation that cannot occur when editing photos. A
possible way to address the visual clutter is achieved
by shifting marked points in screen space towards the
observer, thereby “boosting” their visibility over other
points (similar to OpenGL’s glPolygonOffset()
function), as demonstrated in Fig. 4.

3.2 Label-Constrained Editing
Labelling points by assigning integer numbers (repre-
senting specific meanings) to each point is the result



Figure 4: “Visibility Boost”: enhance the visibility of
marked dots to avoid visual clutter.

of a classification process to identify objects in raw
data. Manual correction of automatic pre-classification
is enhancing accuracy and providing the essential in-
put data for refined training of machine learning algo-
rithms. With such pre-classified data sets only some
points usually need to be re-labeled; it is thus desirable
to define sets of labels that should be subject to edit-
ing whereas other sets of labeled points shall remain
unmodifiable, as demonstrated in Fig. 5.

Figure 5: GUI element to control label-constrained
editing: visibility checkbox, description, colorization,
integer value, selected assignator, write-property.

3.3 Field-Based Editing
It is rather straightforward to also consider any data
field – i.e., point attributes – for constrained editing,
including per-point scalar values with global or local
threshold or range constraints such as height informa-
tion (“only allow modification of points beyond 834m
elevation above sea level”) or point neighborhood infor-
mation such as planarity [RBC+12] (“only allow modi-
fication of points that reside within a plane given a min-
imal deviation tolerance”).
Geometry-Constrained Editing Geometry is per-
point coordinate information and can be constrained by
an axis-aligned bounding box, or any other formula im-
plementing an inside/outside check of a volumetric re-
gion. In practice, having the ability to define an axis-
aligned bounding box, as demonstrated in Fig. 6, han-
dles the systematic manual traversal of an extended data
volume. Such a selected geometric region can, but does
not necessarily have to, correspond to the geometric
properties of data fragments. An additional geometric
constraint can be defined by specifying a depth range

as seen from the observer, thus effectlively defining a
cross-section for editing.

Figure 6: Example of a bigger point cloud (red bound-
ing box, top) and a smaller tile of this point cloud (blue
bounding box, bottom) in HydroVish. Editing can be
restricted to arbitrary tile shapes with a shiftable box
selection allowing to systematically traverse the entire
volume in regular tiles.

Editing Coordinates Coordinates are another data
field that can be subject to an editing operation, thereby
enabling modification of a point cloud’s geometry, just
as in CAD applications. Furthermore, as long as the
number of point remains constant, also additional prop-
erties of an underlying geometric object are unaffected:
if the connectivity information within a triangular mesh
is not touched, then the point cloud editor is directly
applicable to editing surface geometries as well.
Editing Colors Color information are RGB values
per point; an editor may modify such attributes instead
of integer labels, resulting in the same functionality of a
Photoshop™ painting with a brush on a photo - but now
painting on a three-dimensional point cloud, or even tri-
angular mesh. However, in contrast to modifying label
information a smooth transition from current value to
new value may be desirable in this case, i.e. using a
“soft" instead of a “hard" brush. This feature can be
realized by computing the distance from each point in
a selection to the boundary of the defining brush shape
and weighting the resulting color accordingly.

4 UNDO OPERATIONS
The common approach to undo actions is a global his-
tory of states that allows to go “backward”, and some-
times also to go “forward” (redo operation). Undoing
an undo action is equivalent to a redo action.



4.1 Three Level Handling
In our context undo/redo operations act on

1. drawing a free-style shape on-screen,

2. applying an on-screen selection to a mask,

3. modifying point attributes by a given mask.

All these operations are inherently independent and
thus have their own undo history. It may be an option to
merge all actions with a time stamp into a global history
such to conform to the “standard” approach. However,
as the application is capable to also perform more than
single editing approach, such as editing entirely inde-
pendent data sets within the same view, mixing such
histories would disable the ability to treat each editing
independently. Even with a single data set, the ability to
undo data modifications immediately, without bother-
ing to go through the masking and lasso history, is ben-
eficial in speeding up practical work. Both the mask-
ing and lasso history are hardly ever needed. The three
types of undo are useful with different relevance de-
pending on the respective editing scenario.

4.2 Fragmented Data & Mixed States
To allow undo and redo operations a history of data
states must be remembered. The “brute-force” aproach
would be to always keep a copy of the entire data set af-
ter each operation. While this is the simplest way to im-
plement a history, it is undesirable for large data due to
performance and memory requirements. A more elabo-
rated approach is to remember only the differences be-
tween two data modification states under the assump-
tion that the majority of data remains unchanged. How-
ever, this comes with an additional computational ef-
fort, and computing differences of the entity of a big
data set is inefficient as well.

In our context of the F5 data model as presented in
Sec. 2.2 all data are split up into fragments such that
each fragment contains only a few million points (out
of hundreds or thousands of millions in its entity). Only
those fragments that are visible as part of an editing op-
eration are loaded into RAM (and eventually the GPU),
all others remain on disk. Consequently, a history of
data modification operations only needs to take those
data fragments into account that are affected by each
operation. An option is then to keep a list of the dif-
ferences of fragments that are modified at each opera-
tion. However, as computing and applying differences
of millions of points does take noticeable computation
time, we decided against using differences, but rather
to keep copies of the involved data fragments before
modification. An undo operation can then be imple-
mented by merely switching pointers to previous data
fragments, avoiding any copy or computational opera-
tion for millions of points and/or their attributes.

For instance, let us denote an editing action as the
transformation of a set of fragments {A,B,C,D,E} to
another state {A’,B’,C’,D’,E’} (out of possibly many
more). A first editing operation modifies fragments
{A,B}, a second editing operation modifies fragments
{C,D,E}. To cover this situation of two operations,
the undo history must remember three states, denoted
hereby as 1 , 2 , 3 :

1 A B
2 A’ B’ C D E
3 C’ D’ E’

Each such state is stored as an “undo field" in the fiber
bundle data model as introduced in Sec. 2.2 (Fig. 7
shows the structure as stored in an HDF5 file). When
editing a fragment, also those fragments from the pre-
vious undo field in the current undo field have to be
copied, even when they have not been edited. This
means that an undo field contains both un-edited as
well as edited data fragments, thus is a mix of edited
and un-edited states. In the example given here, the
undo field 2 is largest as it contains five data frag-

ments, the other two undo fields 1 and 3 require
less memory. An undo operation needs to replace frag-
ments as stored in 3 by the respective fragments as

stored in 2 (but not all fragments in 2 !). A subse-
quent undo operation then needs to replace fragments in
undo field 2 by the fragments stored in 1 , if those
exist. Thus, at each such operation, only the actually
modified fragments are changed, same as when using
differences: even though undo field 2 contains five
fragments, only two or three are replaced in this sce-
nario at each undo operation.

4.3 I/O - Persistent Editing History
The usual approach of handling data is to

• load data from disk to RAM;

• if out of memory, let the operating system swap
RAM data to disk, or utilize internal temporary files
to store RAM information on disk;

• once data modification is finished, save the resulting
data from RAM to exportable file formats;

• during data export, possibly load data from swap
space (OS-provided or temporary files).

Whereas, via using HDF5 and the fiber bundle data
model this functionality is simplified significantly:

• the file is parsed for metadata, only those are loaded;

• data fragments are only loaded when needed;



• modified data fragments are stored to the HDF5 if
the application runs out of memory or terminates.

Hereby the HDF5 file serves as disk-image of the in-
RAM data structure with no need of computationally
intensive data transformations. This functionality mim-
ics a memory-mapped file but is much more flexible
since the data items can be extended dynamically at
many “branches” of the hierarchically stored data. Via
HDF5 highly performing compression filters such as
LZ4 or ZSTD are available, such that disk space us-
age is minimal while I/O performance is higher than
reading uncompressed data. Some of these high per-
formance compression filters even claim [Alt10, Alt23]
to be designed to unpack data faster than a traditional
memcpy() operation could load them into CPU cache.
In consequence, there is no need for “swap files” or
“temporary files”, and even an explicit “save” opera-
tion becomes superfluous: any data modification is di-
rectly mapped to the underlying HDF5 file in an end-
user ready file format available for further data process-
ing.

/t=0.0/Lake/Points/UTM32N/Labels/Frag[8x16x0] Dataset {273499}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[8x17x0] Dataset {75708}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[9x15x0] Dataset {108860}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[9x16x0] Dataset {980038}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[9x17x0] Dataset {998418}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[9x18x0] Dataset {468318}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[9x19x0] Dataset {901}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[10x15x0] Dataset {143972}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[10x16x0] Dataset {921022}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[10x17x0] Dataset {1004095}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[10x18x0] Dataset {857482}
/t=0.0/Lake/Points/UTM32N/Labels/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0000/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0001/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0002/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0003/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0004/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0005/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0006/Frag[10x17x0] Dataset {1004095}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0006/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0007/Frag[10x17x0] Dataset {1004095}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0007/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0007/Frag[9x16x0] Dataset {980038}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0007/Frag[9x17x0] Dataset {998418}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0008/Frag[9x16x0] Dataset {980038}
/t=0.0/Lake/Points/UTM32N/Labels.Undo-0008/Frag[9x17x0] Dataset {998418}
/t=0.0/Lake/Points/UTM32N/Mask/Frag[10x18x0] Dataset {857482}
/t=0.0/Lake/Points/UTM32N/Mask/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Mask.Undo-0000/Frag[10x19x0] Dataset {255736}
/t=0.0/Lake/Points/UTM32N/Mask.Undo-0001/Frag[10x19x0] Dataset {255736}

Figure 7: Partial listing of an HDF5 file in F5 layout as
described in Sec. 2.2 containing both “labels” informa-
tion and undo history of a fragmented point cloud using
the HDF5 standard tool “h5ls”. Note that fragments of
the same name are of identical size.

The undo history as presented in Sec. 4.2 is stored
as Fields in the fiber bundle model (as introduced in
Sec. 2.2 ) and therefore subject to I/O like all other
data fields. Consequently the undo history is persis-
tently stored in an HDF5 file upon any data modi-
fication action and preserved when the application is
restarted. Any data modification steps can be replayed
days, weeks, years later, based on an HDF5 file con-
taining the full history information. Fig. 7 demonstrates
the effective partial structure of such an HDF5 file de-
scribing a point cloud with labels, undo information
for labels, masking for labels and undo information for

Figure 8: Example of free-style point selection (red
points) and final classification assigned (green points).

masking, based on the previously mentioned five-level
hierarchical data organization. The length of the his-
tory is only limited by available disk space. A length
of 1024 is already overkill in practical applications, us-
ing a length of 8 turned out to be sufficient to cover an
active editing process.

5 RESULTS
In the following, we compare our implementation for
editing point-clouds with that provided by two other
software solutions. Similar to our software (denoted as
3 ), one of the two software solutions is a general and
widely used software toolkit for point clouds (denoted
as 1 ) allowing to import datasets from various origins
including LAS format support. The other one is more
specific and represents a software solution provided by
a sensor manufacturer (denoted as 2 ). We intentionally
omit the actual name of the respective software pack-
ages to avoid marketing issues. The key points of the
comparison are summarized in Table 1.

The comparisons were performed using a desktop PC
equipped with an AMD Ryzen 7 3700X 8-Core Proces-
sor, 3.59 GHz, 64.0 GB RAM, graphic card NVIDIA
GeForce RTX 3070 running under Windows 10 Pro.

5.1 Manual Selection Options
All three software solutions provide similar point se-
lection options but with differences in their actual de-
tails such as naming. A standard selection tool is the
polygon shape. The polygon shape selection must be
performed vertex by vertex, and must be closed manu-
ally at the same place where the selection was started
( 1 ), or is closed automatically by simple right mouse-
button click ( 2 ) respectively is already closed from the
beginning ( 3 ). Further basic selection modes consist
of rectangular selection mode (e.g. 2 ), line selection
mode (e.g. 1 ), as well as a free-style selection mode
( 1 , 2 , 3 ; Fig. 8).



5.2 Subdivision of Big Point Clouds
To facilitate a quick manual editing progress as well as
maintaining an overview of the editing progress espe-
cially in big point clouds, it is highly beneficial that an
entire dataset can be subdivided into smaller pieces that
can be edited separately from each other. This oppor-
tunity is provided in 1 and 3 but missing in 2 . For
3 , Fig. 6 shows an example of a small tile (bottom im-
age) resulting from the subtiling of a larger point cloud
(top image). In Fig. 9, the active selection progress (red
points) in the small tile from Fig. 6 is indicated.

Figure 9: Active polygonal point selection progress (red
points) in point cloud tile from Fig. 6.

5.3 Manual Classification Assignment
Once points were selected from a point cloud, the clas-
sification has to be assigned (Fig. 8). In one case, this
is done immediately after the selection is finished ( 1 ).
In the other case, the selection can still be edited fur-
ther, e.g. expanding the selection or deselecting points
( 2 and 3 ). The classification is then assigned in a
separate step by the user using a hotkey or button click
in the respective GUI ( 2 and 3 ). All three software
tools provide predefined classification ranges as well
as the opportunity to introduce new classes according
to the user’s need. After assigning a class to a certain
point selection, this selection is no longer maintained in
all three software applications. In case of a mistakenly
class assignment, 3 provides the opportunity of undo
and redo operations at different levels, which are stored
in the corresponding data file, and are still accessible
after classification process is finished. In 1 , single or
multiple mistakenly class assignment(s) can be undone
back in time, but these corrections are not accessible
anymore after finalized classification. In 2 , no undo
operation is available to correct a mistakenly class as-
signment. Here, a renewed point selection and class
assignment is required.

5.4 Display and Navigation
To facilitate the manual editing process of a point cloud,
it is often required that only specific point class(es)
are displayed and the point selection can be restricted
to certain class(es). This is possible in all three soft-
ware solutions evaluated here. In 2 it is further pos-
sible to restrict the display of points to a specified pre-
vious point selection. In 3 , it is possible to simply
set a certain cross-section depth and navigate back and
forth through a point cloud in any desired direction just
by mouse usage. In this case, points outside the de-
fined cross-section depth are not displayed as well as
not selectable for editing. In 1 , a similar 3D navi-
gation in cross-sectional view is possible but requiring
a few more button clicks for specifying the navigation
progress (Fig. 10). In contrast, in 2 it is only possible
to display a cross-section of a certain depth through-
out a point cloud based on an interactive 3D bounding
box definition (Fig. 11 middle). All points inside this
box are displayed afterwards (Fig. 11 bottom). For the
user’s orientation in a point cloud dataset, 2 provides
separated 2D and 3D views. The zoom level of the 2D
view defines the display area of the point cloud in 3D
(Fig. 11). For re-sizing the 3D point cloud display, one
need to adjust the zoom level in 2D first. Both views can
be shown in parallel. In 1 , the point cloud is usually
displayed in several parallel 3D views, e.g. overview of
entire dataset and detailed view from point cloud sec-
tion for editing purpose (Fig. 10). The size of the views
can be adjusted to the user’s specific needs. In contrast
to 1 and 2 , we provide a single, quickly navigable 3D
view of an entire point cloud in 3 (Fig. 12).

Figure 11: Solution [2]: GUI / view of an entire point
cloud (top) and extracted cross-section view (bottom).



Figure 10: Solution [1]: GUI and 3D overview of
an entire point cloud with indicated location of cross-
sectional view (top). 3D views including detailed and
cross-sectional view from area of interest (bottom).

Figure 12: Solution [3] (ours): GUI and 3D view of
an entire point cloud with marked sub-region (top) and
cross-sectional view of sub-dataset (bottom).

6 CONCLUSION
We presented a systematic approach to allow interac-
tive editing of big point clouds, and provided a com-
parison of our implementation with existing solutions.
The presented methodology is based on the mathemat-
ics of fiber bundles and extends very naturally to var-
ious application scenarios, while providing high flexi-

bility and performance at the same time. The ability
to store the editing history persistently in a data file is
an unique functionality offering high security on data
management and modification accountability. It further
supports data quality management, e.g. tracking classi-
fication errors in the editing history which became ob-
vious during a later processing step such as terrain mod-
eling out of classified terrain points. Manual editing of
a point cloud requires combining multiple user aspects
to be timely efficient. The flexible selection and class
assignment modi in combination with the three-level,
preservable undo/redo options of point editing stages
as well as the 3D navigation and display possibilities
are highly beneficial in this context. This capability
increases the user’s manual correction performance in
general, resulting in shorter editing times in both sim-
ple and complex areas of a point cloud. A big point
cloud requires quick and easy access to smaller sub-
areas of the point cloud such that a regular subdivision
for a systematic aerial editing is highly advantageous
(Fig. 6 and Fig. 12) and improves productivity.

To support our findings, we performed a manual edit
of the same point cloud in 1 and 3 by classifying two
roofs out of the point cloud. The manual editing steps
consist of a polygon-shaped point selection and class
assignment to the first roof, continued by a subsequent
point selection requiring 3D navigation to allow for an
appropriate point selection and class assignment to the
second roof. This editing was carried out by three users
in both software applications, demonstrating a perfor-
mance gain of about 33% for manual editing.
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